Computational study of chaotic and ordered solutions of the Kuramoto-Sivashinsky equation
نویسندگان
چکیده
We report the results of extensive numerical experiments on the Kuramoto-Sivashinsky equation in the strongly chaotic regime as the viscosity parameter is decreased and increasingly more linearly unstable modes enter the dynamics. General initial conditions are used and evolving states do not assume odd-parity. A large number of numerical experiments are employed in order to obtain quantitative characteristics of the dynamics. We report on di erent routes to chaos and provide numerical evidence and construction of strange attractors with self-similar characteristics. As the \viscosity" parameter decreases the dynamics becomes increasingly more complicated and chaotic. In particular it is found that regular behavior in the form of steady state or steady state traveling waves is supported amidst the time-dependent and irregular motions. We show that multimodal steady states emerge and are supported on decreasing windows in parameter space. In addition we invoke a self-similarity property of the equation, to show that these pro les are obtainable from global xed point attractors of the Kuramoto-Sivashinsky equation at much larger values of the viscosity. The work of Y.S. Smyrlis was supported by NATO Grant CRG 920097. The work of D.T. Papageorgiou was supported by the National Science Foundation Grant NSF-DMS-9003227 and by NATO Grant CRG 920097. Additional support was also provided by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480 while he was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
منابع مشابه
Exact Solutions of the Generalized Kuramoto-Sivashinsky Equation
In this paper we obtain exact solutions of the generalized Kuramoto-Sivashinsky equation, which describes manyphysical processes in motion of turbulence and other unstable process systems. The methods used to determine the exact solutions of the underlying equation are the Lie group analysis and the simplest equation method. The solutions obtained are then plotted.
متن کاملComputational Study of the Dispersively Modified Kuramoto-Sivashinsky Equation
We analyze and implement fully discrete schemes for periodic initial value problems for a general class of dispersively modified Kuramoto–Sivashinsky equations. Time discretizations are constructed using linearly implicit schemes and spectral methods are used for the spatial discretization. The general case analyzed covers several physical applications arising in multi-phase hydrodynamics and t...
متن کاملApplication of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملIntermittent chaos driven by nonlinear Alfvén waves
We investigate the relevance of chaotic saddles and unstable periodic orbits at the onset of intermittent chaos in the phase dynamics of nonlinear Alfvén waves by using the Kuramoto-Sivashinsky (KS) equation as a model for phase dynamics. We focus on the role of nonattracting chaotic solutions of the KS equation, known as chaotic saddles, in the transition from weak chaos to strong chaos via an...
متن کاملState Space Geometry of a Spatio-temporally Chaotic Kuramoto-sivashinsky Flow
The continuous and discrete symmetries of the Kuramoto-Sivashinsky system restricted to a spatially periodic domain play a prominent role in shaping the invariant sets of its spatiotemporally chaotic dynamics. The continuous spatial translation symmetry leads to relative equilibria (traveling wave) and relative periodic orbit solutions. The discrete symmetries lead to existence of equilibrium a...
متن کامل